
PENTAHO DATA
INTEGRATION

SCALING OUT

LARGE DATA VOLUME
PROCESSING IN THE CLOUD

OR ON PREMISE

A White Paper Presented by:

http://www.bayontechnologies.com
Open Source Business Intelligence Experts

Author:
Nicholas Goodman

Principal Consultant and Founder
ngoodman@bayontechnologies

Please post any questions, comments on this paper
to the Pentaho Forum

Copyright Bayon Technologies, Inc © 2009 1 / 20 PDI Scale Out White Paper

http://forums.pentaho.org/showthread.php?p=212105#post212105
mailto:ngoodman@bayontechnologies
http://www.bayontechnologies.com/

Introduction
Pentaho Data Integration (PDI) 3.2 provides advanced clustering and partitioning capabilities that
allow organizations to “scale out” their Extract, Transform and Load (ETL) deployments instead of
“scaling up” on expensive single node machines. Data volumes grow consistently but batch
loading windows have remained the same creating challenges for any data warehouse. Scale out
capabilities in PDI can reduce this risk in addition to being exceptionally cost effective compared
to proprietary solutions. In this paper we'll review the performance of PDI scale out capabilities
and it's ability to process billions of rows across as many as 40 nodes. This paper explores using
Amazon Elastic Compute Cloud (EC2) as an infrastructure for building PDI clusters “on demand”
demonstrating some compelling price / performance metrics for doing data processing in the
cloud.

This paper answers the following questions:

Question 1 : Does PDI scale linearly when adding additional nodes to a cluster?

If it takes 4 hours to do our processing on 1 node will it take 1 hour to do it on 4 nodes? We want
to see if we can simply add additional compute nodes to our cluster to decrease our batch
processing time. It is desirable to have this linear scalability so that we can deploy the correct
number of nodes to meet our batch time requirements.

Question 2 : Does PDI scale linearly when processing more data?

If we double the size of the dataset we're processing, does PDI take twice as long to process that
data? We want to see if a PDI cluster can handle increased amounts of data gracefully.

Question 3 : What are the key price and performance metrics of ETL in the cloud?

We want to see some overall performance and cost numbers from our cloud experiments. We will
eventually want to compare this to a physical in house deployment scenario but for now we just
want to get some high level metrics such as “$ per billion rows sorted and aggregated.”

Question 4: What does someone deploying PDI on Amazon EC2 need to know?

We want to develop a set of well known issues and any best practices that can be used to deploy
PDI clusters on the cloud. What information is helpful for these deployments?

In addition to providing summarized results and analysis of these four questions, there are several
sections that explain in greater detail the specific test cases, datasets, and results from
experiments performed on EC2. The PDI transformations and test dataset generators are
available for download to explore the test cases and results presented here (see Appendix B –
References for the download link).

Pentaho Data Integration (PDI) Clusters

PDI clusters are built for increasing performance and throughput of data transformations; in
particular they are built to perform classic “divide and conquer” processing of datasets in parallel.
Clustering capabilities have been in PDI since version 2.4, with new features being added with
every release. The new cluster capabilities in PDI 3.2 improve the ability to dynamically create

Copyright Bayon Technologies, Inc © 2009 2 / 20 PDI Scale Out White Paper

clusters of available servers, greatly reducing the amount of work necessary to manage a PDI
cluster at runtime. These “dynamic cluster” capabilities make the cloud deployments we discuss
in this paper far more simple and straightforward to manage.

PDI clusters have a strong master/slave topology. There is ONE master in cluster but there can
be many slaves. Transformations are “broken” into master/slaves at run time and deployed to all
servers in a cluster. Each server in the cluster is a running application called “Carte.” Carte is a
small PDI server running a very lightweight web service interface to receive, execute, and monitor
transformations.

PDI clusters are not, however, intended as a “high availability” or “job management” system to
handle fault tolerance and load balancing. The PDI clustering and partitioning mechanisms are
relatively naïve at runtime; PDI clusters do not do any optimizations based on CPU/load or
observed performance of nodes in the cluster.

PDI clustering is a capability in the software; it is not dependent on any particular cloud vendors
API/implementation. It can just as easily, and regularly is, deployed on internal dedicated
hardware.

Amazon EC2

EC2 allows for dynamic provisioning of compute resources such as servers, block devices, IP
addresses, etc. This infrastructure allows for companies to provision machines when they need
the compute capabilities and then release those resources when they are no longer needed. The
rate for services is tied only to use and you only pay for what you use. The price of using 100
machines for 1 hour is the same as using 1 machine for 100 hours.

In addition to providing raw compute resources (servers), EC2 also provides a block device called
Elastic Block Storage (EBS). This service acts like a Storage Area Network (SAN) for EC2 that
allows block devices to be mounted to EC2 servers and filesystems to be created and used.

Since you pay for only what you use with no long term hardware commitments this can be a very
attractive model for those who need a lot of compute resources for short periods of time.
Consider some of these approximate costs:

 40 small servers (1.7 GB of memory with 1 virtual core) for 1 hour = $4.00
 20 TB of block storage used for 1 hour = $2.80

ETL and Cloud : A Superb Match

This profile of compute resource needs is an ideal match for nightly, weekly and monthly ETL
batch processing which typically needs a surge of compute resources during the batch window.
Daily batch ETL processing usually kicks off in the middle of the night, and processes the settled
data from the previous day. The batch window is the amount of time from the beginning of the
process (data available to process) to the time when the data processing is completed (reports are
ready for users). The batch window remains relatively fixed (you can start processing at 12:01
am and people look at reports at 8:00am) but the volume of data for processing is growing at a
significant rates in many organizations.

The attractive cloud computing costs coupled with the periodic surge of ETL compute needs makes
the cloud an ideal location for deployment.

Copyright Bayon Technologies, Inc © 2009 3 / 20 PDI Scale Out White Paper

Experiments
Test Data : TPC-H

We chose to use the TPC-H data set from the Transaction Processing Council. We chose this
dataset for the following reasons:

 TPC provides a data generator that allows generating different scales of data. In our
experiments, we generated THREE datasets. Scales 50, 100, 300 (in GB).

 TPC-H is a relatively well known DSS dataset. Rather than invest time and effort in
building our test dataset we could use something that is a relatively known dataset for data
warehouse database benchmarks.

 It's a test dataset that is independent of these tests; readers can be guaranteed this
dataset wasn't intentionally built to perform well with these tests.

Please Appendix B – References for links to TPC-H documents that contain specifics of the
datafiles we used in the experiments. These documents also include a diagram of the
relationships between the files (similar to an ER diagram).

The “lineitem” file is the main set of transaction records and is the largest in the TPC-H dataset.
It contains information on items purchased in a retail store. There are some relatinships that will
be used in our experiments:

 Lineitems have a “party/supplier” dual value foreign key to the Part / Supplier data files.
 Suppliers have a foreign key to the country of origin.

The files are “flat” files with varied data types (characters, integers, and numbers) that are
delimited by a pipe (|). The data files used in the experiments were not modified in any way after
generation using the TPC provided “dbgen” program.

File # of Fields Scale Size in GB # of Lines

lineitem.tbl 16 50 36.82 300,005,811

lineitem.tbl 16 100 74.12 600,037,902

lineitem.tbl 16 300 225.14 1,799,989,091

supplier.tbl 7 50 0.07 500,000

supplier.tbl 7 100 0.13 1,000,000

supplier.tbl 7 300 0.40 3,000,000

nation.tbl 4 ALL 0.00 24

NOTE: This experiment is in NO WAY to be an official TPC-H benchmark. TPC-H Benchmarks have
very specific requirements for databases performing them. This experiment does none of these
things.

ETL Scenarios

In order to answer our experiment questions, we needed ETL that:
 Was relatively simple so readers not familiar with PDI would still be able to understand the

Copyright Bayon Technologies, Inc © 2009 4 / 20 PDI Scale Out White Paper

overall ETL processing.
 Did some non trivial processing.
 Matched to a relatively common use case.

Several different ETL scenarios were evaluated, and eventually two ETL transformations were
tested. Some high level explanations of the transformations are presented here, along with full
screenshots in Appendix A.

READ (read_lineitems_lazy.ktr)

READ is a baseline to see how fast the cluster can simply read the entire file. It reads records and
does no additional processing on those records. READ ends the slave portion of the transform and
then returns some information on how this particular slave server performed.

READ won't map to a real world use case; it's simply used for us to evaluate the infrastructure
and get a baseline for reading large data files.

READ OUTPUT FILE (out_read_lineitems)

READ outputs some useful information about individual node performance on the server
(out_read_lineitems). It includes the server name, the # of records processed, and the per server
throughput.

Slave # of Records Elapsed Time (s) Throughput/node

Dynamic slave [10.250.15.69:8080] 30144428 894 33718.60

Dynamic slave [10.251.199.67:8080] 29916897 901 33204.10

Dynamic slave [10.250.19.102:8080] 29917123 903 33130.81

Dynamic slave [10.250.47.5:8080] 30144739 908 33199.05

Dynamic slave [10.251.42.162:8080] 29988406 920 32596.09

Dynamic slave [10.251.71.159:8080] 29916947 942 31758.97

Dynamic slave [10.251.122.49:8080] 29915685 949 31523.38

Dynamic slave [10.250.11.95:8080] 29916158 950 31490.69

Dynamic slave [10.251.203.114:8080] 29916164 1044 28655.33

Dynamic slave [10.250.137.204:8080] 30229264 1095 27606.63

SORT (sort_lineitems_group_by_nationkey.ktr)

Copyright Bayon Technologies, Inc © 2009 5 / 20 PDI Scale Out White Paper

SORT represents a real world need for sorting, joining, and aggregating large transaction files.
SORT is similar to READ in that it reads the datafile but then it SORTs and aggregates the file to
build a “COUNT OF LINEITEMS by SUPPLIER” total.

SORT is also doing another read and sort of another large file (supplier). In this case, there is no
aggregation but the data is sorted to join it with the “COUNT OF LINEITEMS by SUPPLIER” branch.

SORT then does a join with another large file (supplier) using the shared “suppkey” value from
both files. After matching the “COUNT OF LINEITEMS by SUPPLIER” to the full supplier record we
sort/aggregate by nationkey.

We aggregate the results (to build combined totals) on the master and output the result to a
datafile on the master server.

Copyright Bayon Technologies, Inc © 2009 6 / 20 PDI Scale Out White Paper

SORT OUTPUT FILE (out_sort_lineitems_group_by_nationkey)

The output is a summary of the number lineitems by supplier country, a simple 25 line file with
one record per nation and the total # of records in the lineitem data file. For instance, for the
TPC-H scale 300 file the output file looks like this:

Nation Key Count of Lineitems

0 71886458

1 71969681

2 72038468

3 72179079

4 72209741

5 72146529

6 72178370

7 72055521

8 72184094

9 71870036

10 71974851

11 72051132

12 71627623

13 71529955

14 71795817

15 72079318

16 71897393

17 71862655

18 71974391

19 72037468

20 72201477

21 72056815

Copyright Bayon Technologies, Inc © 2009 7 / 20 PDI Scale Out White Paper

22 71873005

23 72432871

24 71876343

With each test, we verified we had the correct results in the files. This included checking row
counts (both READ and SORT) and results (SORT).

Parallel File Processing

The designation of Cx0 indicates that this step will be run on the cluster. By default, most steps
don't need any additional cluster configuration. Most discreet units of work (Calculations,
decodes, filtering, etc) work independently and need no special cluster configuration but inputs
and outputs, if run on the cluster, need to be configured to operate on a portion of the data.

The CSV Input Step has a configuration parameter “Running in Parallel?” which will instruct the
step to read only it's “segment” of the file if deployed on a cluster. This enables each node to read
approximately 1 / N part of a file.

1000

FILE
100

100

100

100

100

100

100

100

100

100

N = 10
READS

READS

READS

READS

READS

READS

READS

READS

READS

READS

This also means that for “Running in Parallel?” all nodes need read access to the same file
(lineitem.tbl) at the same location (/data) to each have the chance to process a different section
of the file.

Copyright Bayon Technologies, Inc © 2009 8 / 20 PDI Scale Out White Paper

EC2 Cluster

Instance Image (AMI)

EC2 provides three instance sizes: small, large, xlarge. Small is a 32 bit image, Large and X-
Large are 64 bit images. In this experiment we used small instances, with the following hardware
specifications:

 1.7 GB of memory
 1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit)
 160 GB of instance storage, 32-bit platform

We built our own machine server image (AMI), based on Fedora 8. This machine image was built
using the standard Amazon EC2 build tools. The machine was built to accept “user data” at
startup time that serves to “configure” the machine at startup. The AMI image remained static
(untouched) throughout this experiment but we delivered varied slave server configuration values
when we started sets of servers.

We passed in the following configurable parameters when we started our servers:
 pdi-distribution-url

The URL of where to get PDI. The AMI downloads and dynamically installs PDI so that
upgrading versions of PDI does not require changing the AMI.
Example: http://www.bayontechnologies.com/pdi-ce-3.2.0-RC1-r10482.zip

 carte-slave-server-xml
This is the XML that the AMI will start “Carte” with. For the MASTER this contains no
specializations. For the SLAVE servers, this needs to contain the hostname of the MASTER
so that the SLAVE servers can register themselves with the MASTER.
Example:
<slave_config> <slaveserver> <name>carte-slave</name>
<hostname>localhost</hostname> <network_interface>eth0</network_interface> <!--
OPTIONAL --> <port>8080</port> <username>cluster</username>
<password>cluster</password> <master>N</master> </slaveserver> </slave_config>

 data-volume-device
The device location of the EBS block device that has been attached to this instance.
Example:
/dev/sdl

 data-volume-mount-point
The location to mount the EBS block device.
Example:
/data

 java-memory-options
Memory options for starting Carte
-Xmx1024m

This “user data” is passed to EC2 as part of the request to start servers.

EBS Volumes

EBS was the mechanism which provided all nodes in the cluster the ability to read parts of same
file. EBS volumes can be attached to only one running server at a time and can range in size from
1 to 1000 GB.

We created a 1000 GB EBS volume and installed an XFS filesystem on it. XFS was used instead of

Copyright Bayon Technologies, Inc © 2009 9 / 20 PDI Scale Out White Paper

ext3 to enable large file (> 2.4GB) support. We generated three different scales of TPC-H data
onto this same volume so any scale could be run from mounting a single volume.

Since an EBS volume can only be attached to one server at a time, we needed a way to quickly
clone and mount individual volumes to running instances. We took a snapshot of our volume
using EBS snapshot capabilities. EBS also allows for quick creation of new volumes from
snapshots so we can quickly create N volumes, one for each of our N nodes that has the dataset
on it.

Scripts

We built scripts to help manage the life cycle of a PDI EC2 cluster. This included major functions
such as:

 Creating Master and Slave Instances
 Creating Master and Slave Volumes from the TPC-H dataset snapshot
 Attaching the Volumes to Instances
 Status Reporting on all Instances
 Executing of clustered transformations

A PDI cluster of N machines was CREATED using the following process:
 Master Volume was created from snapshot (ec2-create-volume)
 N Volumes were created from snapshot (ec2-create-volume)
 Master Slave was started (ec2-run-instance)
 Once Master was running, attach volume (ec2-attach-volume)
 N Slaves were started (ec2-run-instance)
 N Volumes were attached to N slaves (ec2-attach-volume)
 Slaves automatically registered themselves with Master

A PDI cluster was DESTROYED using the following process:
 Slave Instances were terminated (ec2-terminate-instances)
 Slave Volumes were detached (ec2-detach-volume)
 Master Instance was terminate (ec2-terminate-instances)
 Master Volume was detached (ec2-detach-volume)
 Slave Volumes were deleted (ec2-delete-volume)
 Master Volume was deleted (ec2-delete-volume)

Using the lifecycle scripts, clusters of 10, 20, and 40 machines were CREATED and DESTROYED in
minutes.

NOTE: The scripts include private security credentials; they are not included in the
pdi_scale_out_benchmark_kit.zip.

Copyright Bayon Technologies, Inc © 2009 10 / 20 PDI Scale Out White Paper

Results
We ran the experiments for all three scales (50, 100, 300) using three different cluster sizes (10,
20, 40) for both SORT and READ. The results are summarized in the following table.

Scale # of Lines Nodes (N) Elapsed Time Rows / sec Transform

50 300005811 10 1095 273978 READ

50 300005811 20 836 358859 READ

50 300005811 40 640 468759 READ

100 600037902 10 1787 335779 READ

100 600037902 20 1736 345644 READ

100 600037902 40 1158 518167 READ

300 1799989091 10 6150 292681 READ

300 1799989091 20 5460 329668 READ

300 1799989091 40 3835 469358 READ

50 300005811 10 2588 115922 SORT

50 300005811 20 1389 215987 SORT

50 300005811 40 704 426145 SORT

100 600037902 10 4615 130019 SORT

100 600037902 20 2680 223895 SORT

100 600037902 40 1318 455264 SORT

300 1799989091 10 15252 118017 SORT

300 1799989091 20 8390 214540 SORT

300 1799989091 40 4014 448428 SORT

The full results of the experiments are included in an Excel file in the Benchmark Kit and are not
presented in their entirety here. We will examine the test results in the context of our experiment
questions.

Copyright Bayon Technologies, Inc © 2009 11 / 20 PDI Scale Out White Paper

Question 1 : Does PDI scale linearly when adding additional nodes to a cluster?

SORT: Elapsed Time

10 20 40
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

50 / SORT

N

El
ap

se
d

Ti
m

e
(s

)

10 20 40
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

100 / SORT

N

El
ap

se
d

Ti
m

e
(s

)

10 20 40
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

300 / SORT

N

E
la

ps
ed

 T
im

e
(s

)

SORT: Throughput (rec/s)

10 20 40
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

50 / SORT

N

Th
ro

ug
hp

ut
 (r

ec
/s

)

10 20 40
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

100 / SORT

N

Th
ro

ug
hp

ut
 (r

ec
/s

)

10 20 40
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

300 / SORT

N

Th
ro

ug
hp

ut
 (r

ec
/s

)

The results from SORT fit the assumption that adding more nodes to a cluster improves
throughput and overall processing close to linear but not exactly.

Consider the 100 / SORT across the three cluster sizes. If we start with the baseline of N = 10
then we can project out how long 20, and 40 should take (N 10 * 2, and N 10 * 4) to come up
with the projected pure linear scaling numbers.

Copyright Bayon Technologies, Inc © 2009 12 / 20 PDI Scale Out White Paper

10 20 40
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

300 / SORT

N

Th
ro

ug
hp

ut
 (r

ec
/s

)

Our performance doesn't match our projections exactly, and does start to show some diminishing
returns on adding more nodes. Some of this is likely to be variations in cloud compute resources
(discussed in Question 4 results) since we had some samples that actually BEAT their projected
performance. For example, 300 SORT / N40 was faster than the projected N10 * 4 number
indicating that there were variations on underlying hardware conditions during the experiments.
However, the data indicates there is not a direct linear relationship on adding more nodes.

READ: Elapsed Time

10 20 40
0

100

200

300

400

500

600

700

800

900

1000

1100

50 / READ

N

E
la

ps
ed

 T
im

e
(s

)

10 20 40
0

200

400

600

800

1000

1200

1400

1600

1800

100 / READ

N

El
ap

se
d

Ti
m

e
(s

)

10 20 40
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

300 / READ

N

El
ap

se
d

Ti
m

e
(s

)

READ: Throughput (rec/s)

Copyright Bayon Technologies, Inc © 2009 13 / 20 PDI Scale Out White Paper

10 20 40
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

50 / READ

N

Th
ro

ug
hp

ut
 (r

ec
/s

)

10 20 40
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

100 / READ

N
Th

ro
ug

hp
ut

 (r
ec

/s
)

10 20 40
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

300 / READ

N

Th
ro

ug
hp

ut
 (r

ec
/s

)

The performance of N40 isn't even close to the projected N10 * 4. In fact, N40 never even shows
more than twice the performance of N10.

On the READ transformation, there is no inter-node communication and the nodes all operate
independently on a different section of the file. There is no real processing and only a small
amount of data (a few Kb) is passed from the slaves to the master. This seems to indicate that
our underlying storage system (EBS) wasn't scaling linearly on read performance to volumes
based on the same snapshot. We did not, unfortunately, do any sort of OS level benchmarks on
the mounted volumes for raw performance on EBS outside of PDI which would have been able to
determine if this was indeed accurate.

ANSWER: Our experiment was not a 100% controlled environment and we think our underlying
cloud infrastructure skewed the results. Even so, our SORT (which will throttle I/O a bit) showed
close to linear scaling and significantly improved performance when adding new nodes. PDI on
EC2 scales nearly linearly, but not exactly likely due to EBS variations.

Copyright Bayon Technologies, Inc © 2009 14 / 20 PDI Scale Out White Paper

Question 2 : Does PDI scale linearly when processing more data?

The results for different scales and nodes have already been presented. Let's look at the
performance of SORT to see how well it scaled with the increasing scales (50, 100, 300).

50 100 300
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000

SORT

40
20
10

Scale

El
ap

se
d

Ti
m

e
(s

)

The values for all node sizes at 100 are approximately 50 * 2. The values for all node sizes at 300
are approximately 50 * 6. We observed better than linear results on some values which also
indicate a variation in underlying compute resources/EBS performance.

ANSWER: PDI scales linearly with increasing data sizes in the cluster sizes and data scales we
tested.

Copyright Bayon Technologies, Inc © 2009 15 / 20 PDI Scale Out White Paper

Question 3 : What are the key price and performance metrics of ETL in the cloud?

Let's first arrive at some overall performance metrics for our cluster. We looked at the overall
SORT performance for each node for all three scales and arrived at an average, per node SORT
performance of 11,373 records per second. This is the average sort performance on our relatively
linear scaling transformation which means we can use this figure with relative confidence at
different scales (data sizes) and cluster sizes (instances in cluster).

Nodes Throughput Throughput / Node

40 443278.79 11081.97

20 218140.49 10907.02

10 121319.17 12131.92

Average SORT throughput / node 11373.64

Here is the loaded cost of our “small” EC2 instance:

EC2 Cost Cost / Hour

Server Time $0.10

EBS Volume (1000 GB) $0.14

EBS Load from S3 $0.01

Bandwidth $0.00

TOTAL $0.25

How many rows can we SORT in 1 hour on one node?

11373 X 60 (seconds) X 60 (minutes) = 40,942,800 Sorted Rows / Hour / Small Node

What is the price per billion rows processed on the cloud?

($0.24 * 1000000000) / 40,942,800 = $5.86 compute cost to SORT a billion rows on EC2

NOTE: These calculations do not take into account cluster startup time (approximately 20 minutes
for 40 node cluster) and smaller negligible bandwidth costs.

Copyright Bayon Technologies, Inc © 2009 16 / 20 PDI Scale Out White Paper

Question 4: What does someone deploying PDI on Amazon EC2 need to know?

All Instances are Not Created Equal

Our READ transformation produced individual node performance metrics. We observed some
significant variations on individual node performance. It is unclear if the difference in individual
performance was the instance (cause by other virtual machines on the same physical server) or
it's connection to EBS (reading the file) but we saw some nodes taking up to 58% longer than
others even though they were processing a similar size/number of rows.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

100 / READ / 40 Nodes

Nodes

El
ap

se
d

Ti
m

e
(s

)

Most are relatively smooth, with nodes 1-38 completing within 100 seconds of each other. Nodes
39 and 40 toke significantly longer causing the overall performance of the transformation to be
equal to the “slowest” node. The full test results show the averages on a per node basis of
throughput which gives a more accurate per node performance number but is irrelevant for
practical use. PDI clusters are only as fast as their slowest node.

PDI assumes a homogenous set of compute resources. It's division of file segments and allocation
to nodes does not take into account any variations in performance or sizing of the machines.
Systems like MapReduce / Hadoop have built in an optimizations to accommodate this and
reallocates chunks of works to different servers based on load and failures. PDI has no such
capabilities.

EBS Volume Performance

Based on our READ performance we observed EBS performance degradation with more nodes
reading from a volume created from a snapshot. This is likely due to the fact that EBS behind the
scenes loads the snapshot from S3 asynchronously and we were hitting blocks ahead of them
being loaded. Each EBS volume is hitting different parts of the files and thus would be hitting
different EBS/S3 blocks.

We should do a follow on experiment of parallel read performance from S3 directly, bypassing
EBS.

Private IPs vs Public IPs

Copyright Bayon Technologies, Inc © 2009 17 / 20 PDI Scale Out White Paper

Amazon EC2 has two IP addresses for every machine; a private and a public. Private IP is used to
communicate internally within Amazon EC2 networks and is believed to be the faster of the two
networks. Public IP is used to communicate with the outside world.

In our cluster startup/monitoring scripts we needed to use the Public IP to communicate with the
server but we wanted the servers to communicate with each other using their Private IPs. In
addition to being faster, there are no bandwidth charges for using the Private IP while there is an
Amazon EC2 charge for using the Public IP – even if it's within EC2 networks. This prevents us
from running our clustered transformation directly via the PDI visual designer to the remote
servers; we created a wrapper Job and shipped it to the master and ran it from the command line
there. PDI 3.2 has the ability to export and ship the job, but it wasn't available on the command
line “kitchen.sh” when we ran these experiments.

Readers should take care to setup their PDI cluster to use private IP addresses for inter node
communication to save money and maximize network performance.

Copyright Bayon Technologies, Inc © 2009 18 / 20 PDI Scale Out White Paper

Appendix A – Test Transformations
sort_lineitems_group_by_nationkey.ktr is available in pdi_scale_out_benchmark_kit.zip

read_lineitems_lazy.ktr is available in pdi_scale_out_benchmark_kit.zip

Copyright Bayon Technologies, Inc © 2009 19 / 20 PDI Scale Out White Paper

Appendix B – References
 Benchmark Kit

http://www.bayontechnologies.com/bt/ourwork/ pdi_scale_out_benchmark_kit.zip
 TPC-H

http://www.tpc.org/tpch/default.asp
TPC-H Data generator
http://www.tpc.org/tpch/spec/tpch_2_8_0.tar.gz
TPC-H Document
http://www.tpc.org/tpch/spec/tpch2.8.0.pdf

 Amazon EC2
http://aws.amazon.com/ec2/
EBS
http://aws.amazon.com/ebs/

 PDI
http://kettle.pentaho.org/
Dynamic Clusters
http://wiki.pentaho.com/display/EAI/Dynamic+clusters

Copyright Bayon Technologies, Inc © 2009 20 / 20 PDI Scale Out White Paper

http://wiki.pentaho.com/display/EAI/Dynamic+clusters
http://kettle.pentaho.org/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://www.tpc.org/tpch/spec/tpch2.8.0.pdf
http://www.tpc.org/tpch/spec/tpch_2_8_0.tar.gz
http://www.tpc.org/tpch/default.asp
http://www.bayontechnologies.com/bt/ourwork/pdi_scale_out_benchmark_kit.zip

